LPS-Stimulated Human Skin-Derived Stem Cells Enhance Neo-Vascularization during Dermal Regeneration
نویسندگان
چکیده
High numbers of adult stem cells are still required to improve the formation of new vessels in scaffolds to accelerate dermal regeneration. Recent data indicate a benefit for vascularization capacity by stimulating stem cells with lipopolysaccharide (LPS). In this study, stem cells derived from human skin (SDSC) were activated with LPS and seeded in a commercially available dermal substitute to examine vascularization in vivo. Besides, in vitro assays were performed to evaluate angiogenic factor release and tube formation ability. Results showed that LPS-activated SDSC significantly enhanced vascularization of the scaffolds, compared to unstimulated stem cells in vivo. Further, in vitro assays confirmed higher secretion rates of proangiogenic as well as proinflammatoric factors in the presence of LPS-activated SDSC. Our results suggest that combining activated stem cells and a dermal substitute is a promising option to enhance vascularization in scaffold-mediated dermal regeneration.
منابع مشابه
مقایسهی تأثیر سلولهای مزانشیمی مشتق از مغز استخوان و سلولهای مزانشیمی تحریکشده با لیپوپلی ساکارید (LPS) در التیام زخم ناشی از سوختگی پوستی درجه سه در موش
Background & Aims: Burning provides irreparable effects on the affected patient. Several studies show that these cells may contribute to tissue regeneration whether through producing a variety of bioactive growth factors and/or by differentiation into mesoderm lineage. Several studies demonstrate that stimulated mesenchymal stem cells have more therapeutic potential than unstimulated cell ...
متن کاملHealing Potential of Mesenchymal Stem Cells Cultured on a Collagen-Based Scaffold for Skin Regeneration
Background: Wound healing of burned skin remains a major goal in public health. Previous reports showed that the bone marrow stem cells were potent in keratinization and vascularization of full thickness skin wounds. Methods: In this study, mesenchymal stem cells were derived from rat adipose tissues and characterized by flowcytometry. Staining methods were used to evaluate their differentiatio...
متن کاملDermal Substitutes Support the Growth of Human Skin-Derived Mesenchymal Stromal Cells: Potential Tool for Skin Regeneration
New strategies for skin regeneration are needed in order to provide effective treatment for cutaneous wounds and disease. Mesenchymal stem cells (MSCs) are an attractive source of cells for tissue engineering because of their prolonged self-renewal capacity, multipotentiality, and ability to release active molecules important for tissue repair. In this paper, we show that human skin-derived mes...
متن کاملA role for pericytes as microenvironmental regulators of human skin tissue regeneration.
The cellular and molecular microenvironment of epithelial stem and progenitor cells is poorly characterized despite well-documented roles in homeostatic tissue renewal, wound healing, and cancer progression. Here, we demonstrate that, in organotypic cocultures, dermal pericytes substantially enhanced the intrinsically low tissue-regenerative capacity of human epidermal cells that have committed...
متن کاملEffects of Inflammatory Cytokine Tumor Necrosis Factor-α on Human Mesenchymal Stem Cell Gene Expression: A Mechanism for Liver Regeneration
Introduction Insulin-like growth factor I (IGF-I) which is produced in abundance in the normal adult liver, is deeply involved in hepatocyte survival, growth, and differentiation during liver development. IGF-I plays the roles via the receptor (IGF-IR) signaling pathway. IGF-IR unlike IGF-I is expressed strongly in the developing liver, but much more weakly in adults. Objective: We hypothesi...
متن کامل